小9直播官网-全国闪式提取器多级闪蒸器厂家直销
当前位置: 首页 > 服务区域
e盐资讯全面科普蒸发技术工艺和设备
作者:小9直播官网 发布时间:2024-03-01 11:29:34

  蒸发(或蒸馏法)虽然是一种古老的方法,但由于技术不断地改进与发展,该法至今仍是浓缩或制淡水的主要方法。蒸馏过程的实质就是水蒸气的形成过程,其原理如同海水受热蒸发形成云,云在一定条件下遇冷形成雨,而雨是不带咸味的。

  根据所用能源、设备、流程不同主要可分多效蒸发、多级闪急蒸发、蒸汽压缩蒸发(MVR)等。

  多效蒸发是最古老的淡化方法之一,在多级闪蒸诞生以前一直是蒸发、浓缩的主导。

  多效蒸发是由单效蒸发组成的系统。将前一蒸发器产生的二次蒸汽引入下一蒸发器作为加热蒸汽,并在下一效蒸发器中冷凝成蒸馏水,如此依次进行。

  原料水进入系统方式:有逆流、平流(分别进入各效)、并流(从第1效进入)和逆流预热并流进料等。

  ①多效蒸发的换热过程是沸腾和冷凝传热,是相变传热,因此传热系数是很高。总的来说多效蒸发所用的传热面积比多级闪蒸少。

  ②多效蒸发通常是一次通过式的蒸发,不像多级闪蒸那样大量的液体在设备内循环,因此动力消耗较少;

  多效的真空度依次增大,即绝对压力依次降低;故料液在各效之间的输送不必用泵,而是靠压差自然流动到后面各效;

  温度也是依次降低,故料液从前一效通往后一效时就有过热现象,也就是发生闪蒸,产生一些蒸汽,即淡水;

  对浓度大,黏度也大的物料而言,后几效的传热系数就比较低;而且由于浓度大,沸点就高,各效不容易维持较大的温度差,不利于传热。

  平流:平流是指各效都单独平行加料,不过加热蒸汽除第一效外,其余各效皆用的是二次蒸汽。

  用于:容易结晶的物料,如制盐,一经加热蒸发,很快达到过饱和状态,结晶析出。

  在水处理过程中主要是要获取淡水,不需用逆流和平流,而且逆流和平流没有顺流的热效率高。

  逆流:逆流是指进料流动的路线和加热蒸汽的流向相反。原料从真空度最高的末一效进入系统,逐步向前面各效流动,浓度慢慢的升高,所以料液往前面一效送入时,不仅没有闪蒸,而且要经过一段预热过程,才可以做到沸腾。

  可见和顺流的优缺点恰好相反。对于浓度高时黏度大的物料用逆流较为贴切,因为最后的一次蒸发是在温度最高的第一效。所以虽然浓度大,黏度还是能降低一些,可以维持比较高的传热系数。这在化工生产上采用较多。

  根据单效蒸发器的分析,蒸发量D/加热蒸汽量D0=0.91或者D0/D=1.1,即1kg蒸汽可以蒸出0.91kg的淡水。

  如果将蒸出的二次蒸汽通往第二个蒸发器的加热室去作为加热用,那么同样1kg的二次蒸汽又可以蒸出0.91kg的淡水。

  以此类推,效数越多,利用1kg加热蒸汽可以蒸发出的淡水也越多,这从热量的利用上来讲是有利的。

  实际上,由于溶液有沸点升高现象,管线有流动阻力损失,使温差有损失,再加上小数多了,即使保温很好,散热面积大了,热损失也增多,所以当小数增多时,热量利用的效率也随之有所降低。考虑到小数增加则设备的投资增大,故实际采用小数应该有一最佳点。

  按蒸发管的排列方向:可大致分为垂直管蒸发器(VTE)和水平管蒸发器(HTE)。

  广义的没管蒸发器又有多种样式,有直管、蛇管、U形管以及竖管、横管等结构。

  料液在蒸发器中的流动方式有:自然对流循环和强制循环两类。这种蒸发器出现较早、操作便捷,但结垢严重、盐水静液柱高、温差损失大,故效数不宜太多,一般在6效以下。

  两个基本优点,一是因管内为膜状汽化,传热壁两侧都有相变,故传热系数高。且消除了料液的静液柱所造成的温差损失。系统的浓缩率比较高,低浓度溶液如海水淡化,目前一般设计的效数为11~13效,造水比可达9~10。

  结垢问题,特别是当液体分配不均或者水量不足时,在管的内壁可能形成干区,结垢的危险性增大。因此在防垢和清垢方面有较高的要求。

  一般说来,在这类蒸发系统中晶种法不宜采用,主要靠化学法防垢加上温度、浓度的合理设计。

  横管薄膜式(HTE):该种蒸发器是循环料液通过喷淋装臵在横管束的管外形成液膜,加热蒸汽(或前效二次蒸汽)在管内凝结。

  它具有与竖管降膜式相同的优缺点,但设备高度远比竖管降膜式为小,装臵紧凑,所有各效的管束、喷淋管和汽水分离器都装在一个筒体中,因而热损失小,能耗低。

  由于温度低,结垢和腐蚀都非常大程度上减轻,保证了较高的传热系数;此外气相阻力小,又消除了静液头损失,传热温差可以很小,尤其适于使用低位热能。

  闪蒸是指一定温度的水在环境压力小于该温度所对应的饱和蒸汽压时发生的骤然蒸发现象。闪蒸后的水温度降低以使其饱和蒸汽压与环境压力平衡。

  MSF也是利用了这个原理,使加热至一定温度的料液,依次在一系列压力逐渐降低的容器中闪蒸汽化,原料得到浓缩,蒸汽冷凝后得到淡水。

  该方法是在多效蒸馏的基础上发展而来的。相比多效蒸馏法多级闪蒸减少了垢的形成,多在低浓度料液浓缩中使用。

  由于此方法加热与蒸发过程分离,并未使原水真正沸腾(仅是表面沸腾),从而大大改善了一般蒸馏的结垢问题;

  MVR(Mechanical Vapor Re-compression)-机械蒸汽再压缩,是指将蒸发(蒸馏等)过程的二次蒸汽(温度低、压力低而无法利用)用压缩机进行压缩,提高其温度、压力,重新作为热源加热需要被蒸发的物料,进而达到循环利用蒸汽的目的,使蒸发过程不需要外加蒸汽;即用少量的电能获得较多的热能,由此减少系统对外界能源的需求的一项高效节能技术。

  水的比热为1 kcal/kg〃℃。1 kg的水,温度每上升1 ℃需要1 kcal的热量。对1 kg的水加热从0 ℃上升到100 ℃沸腾,仅需要100 kcal的热量。将1kg 100 ℃的水汽化,成为同温度的蒸汽,则需要539 kcal热量。能耗是相当于使同样重量的水温度每升高1 ℃所需热量的539倍。

  国外早在1834年就已有人提出MVR热泵的构想,而最终应用该项技术的产品是由瑞士的一家公司1917年制造。

  1925年,奥地利设计安装了一套设备,由此出现了实际运行中使用的MVR 装置。

  上世纪70年代石油问题造成了能源危机,在节能降耗的大势所趋下,MVR 热泵得到了迅速发展。

  20世纪80年代,张家坝制盐化工厂在国内首次引进机械热压缩工艺进行制盐生产。

  2010年,中盐金坛引进的生产能力120万吨/年精制盐MVR 装置,成功运行至今。